1、图略,3.
2、顶角平分线(或底边上的中线或底上
的高)所在直线,3.
3、12.
4、AC = AE = BE,CD = DE,AD = DB,
∠CAD = ∠DAE = ∠B,∠C = ∠AED
= ∠BED. ∠ADC = ∠ADE = ∠EDB.
5、5 cm.
6、∵ 点C、D在线段AB的垂直平分线MN上
∴ CA = CB,DA = DB(线段垂直平分线上的点到线段两端的距离相等).
∴ ∠CAB = ∠CBA,∠DAB = ∠DBA(等边对等角).
∴ ∠CAB - ∠DAB = ∠CBA - ∠DBA,即∠CAD = ∠CBD.
7、∵ AC = BC,∠C = 90°.
∴ ∠B = ∠CAB = 45°(等边对等角).又DE ⊥ AB,
∴ ∠EDB = 90°- ∠B = 45°.
∴ ∠B = ∠EDB.∴ ED = EB(等角对等边).在△ACD和△AED中,
∵ ∠CAD = ∠EAD,∠C = ∠DEA = 90°,AD = AD,
∴ △ACD ≌ △AED.∴ AC = AE,CD = ED.
∴ AB = AE + EB = AC + CD.
8、连接CD.
(1) ∵ ∠ACB = 90°,D是AB的中点,
∴ CD = AD(直角三角形斜边上的中线等于斜边的一半),∠DCF = ∠ACB = 45°
(等腰三角形底边上的中线、顶角的平分线重合).
∵ AC = BC,
∴ ∠A = ∠B = 45°(等边对等角)
∴ ∠A = ∠DCF.又AE = CF,
∴ △DAE ≌ △DCF.
∴ DE = DF;
(2)∵ ∠ACB = 90°,D是AB的中点,
∴ CD ⊥ AB(直角三角形底边上的中线、高线重合),即∠ADE + ∠EDC = 90°.
∵ △DAE ≌ △DCF,
∴∠ADE = ∠CDF.
∴ ∠CDF + ∠EDC= 90°.
∴ DE ⊥ DF.